Radicals which define factorization systems
نویسنده
چکیده
A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
منابع مشابه
Triple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کامل$n$-factorization Property of Bilinear Mappings
In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...
متن کاملSEMI-RADICALS OF SUB MODULES IN MODULES
Let be a commutative ring and be a unitary module. We define a semi prime sub module of a module and consider various properties of it. Also we define semi-radical of a sub module of a module and give a number of its properties. We define modules which satisfy the semi-radical formula and present the existence of such a module.
متن کاملSemi-radicals of Sub modules in Modules
Abstract: Let be a commutative ring and be a unitary module. We define a semiprime submodule of a module and consider various properties of it. Also we define semi-radical of a submodule of a module and give a number of its properties. We define modules which satisfy the semi-radical formula and present the existence of such a module.
متن کاملFrom torsion theories to closure operators and factorization systems
Torsion theories are here extended to categories equipped with an ideal of 'null morphisms', or equivalently a full subcategory of 'null objects'. Instances of this extension include closure operators viewed as generalised torsion theories in a 'category of pairs', and factorization systems viewed as torsion theories in a category of morphisms. The first point has essentially been treated in [15].
متن کامل